3,114 research outputs found

    On geometric properties of passive random advection

    Full text link
    We study geometric properties of a random Gaussian short-time correlated velocity field by considering statistics of a passively advected metric tensor. That describes universal properties of fluctuations of tensor objects frozen into the fluid and passively advected by it. The problem of one-point statistics of co- and contravariant tensors is solved exactly, provided the advected fields do not reach dissipative scales, which would break the symmetry of the problem. Asymptotic in time duality of the problem is established, which in the three-dimensional case relates the probabilities of the volume deformations into "tubes" and into "sheets".Comment: latex, 8 page

    Burgers turbulence with pressure

    Full text link
    The randomly driven Burgers equation with pressure is considered as a 1D model of strong turbulence of compressible fluid. It is shown that infinitely small pressure provides a finite effect on the velocity and density statistics and this case therefore is qualitatively different from turbulence without pressure. We establish the corresponding operator product expansion and predict the intermittent velocity- difference and mass-difference PDFs. We then apply the developed methods to the statistics of a passive scalar advected by the Burgers field.Comment: 4 pages, revte

    Turbulence without pressure in d dimensions

    Full text link
    The randomly driven Navier-Stokes equation without pressure in d-dimensional space is considered as a model of strong turbulence in a compressible fluid. We derive a closed equation for the velocity-gradient probability density function. We find the asymptotics of this function for the case of the gradient velocity field (Burgers turbulence), and provide a numerical solution for the two-dimensional case. Application of these results to the velocity-difference probability density function is discussed.Comment: latex, 5 pages, revised and enlarge

    Numerical experiment optimization to obtain the characteristics of the centrifugal pump steps package

    Get PDF
    © Published under licence by IOP Publishing Ltd. The numerical simulation method of turbulent flow in a running space of the working-stage in a centrifugal pump using the periodicity conditions has been formulated. The proposed method allows calculating the characteristic indices of one pump step at a lower computing resources cost. The comparison of the pump characteristics' calculation results with pilot data has been conducted

    Shell to shell energy transfer in MHD, Part I: steady state turbulence

    Full text link
    We investigate the transfer of energy from large scales to small scales in fully developed forced three-dimensional MHD-turbulence by analyzing the results of direct numerical simulations in the absence of an externally imposed uniform magnetic field. Our results show that the transfer of kinetic energy from the large scales to kinetic energy at smaller scales, and the transfer of magnetic energy from the large scales to magnetic energy at smaller scales, are local, as is also found in the case of neutral fluids, and in a way that is compatible with Kolmogorov (1941) theory of turbulence. However, the transfer of energy from the velocity field to the magnetic field is a highly non-local process in Fourier space. Energy from the velocity field at large scales can be transfered directly into small scale magnetic fields without the participation of intermediate scales. Some implications of our results to MHD turbulence modeling are also discussed.Comment: Submitted to PR

    Structure Function Scaling of a 2MASS Extinction Map of Taurus

    Get PDF
    We compute the structure function scaling of a 2MASS extinction map of the Taurus molecular cloud complex. The scaling exponents of the structure functions of the extinction map follow the Boldyrev's velocity structure function scaling of supersonic turbulence. This confirms our previous result based on a spectral map of 13CO J=1-0 covering the same region and suggests that supersonic turbulence is important in the fragmentation of this star--forming cloud.Comment: submitted to Ap

    Modeling of dynamics of vapor compression cooling system

    Get PDF
    © Published under licence by IOP Publishing Ltd. A mathematical model of cooling system with a vapor-liquid compression unit is presented. The modeling of dynamics of the parameters of the vapor compression system during the system start-up in the cooling mode was carried out. It is noted that with the accepted assumptions the evaporation and condensation temperatures stabilize fast enough: in the evaporator - in 0.5 s, in the condenser - in 2 s

    A note on Burgers' turbulence

    Get PDF
    In this note the Polyakov equation [Phys. Rev. E {\bf 52} (1995) 6183] for the velocity-difference PDF, with the exciting force correlation function Îș(y)∌1−yα\kappa (y)\sim1-y^{\alpha} is analyzed. Several solvable cases are considered, which are in a good agreement with available numerical results. Then it is shown how the method developed by A. Polyakov can be applied to turbulence with short-scale-correlated forces, a situation considered in models of self-organized criticality.Comment: 11 pages, Late
    • 

    corecore